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Abstract—Disks and plates subjected to stretching and flexure are stiffened by curvilinear rib-
stiffeners whose shape and cross-scctional area are subject to optimization. Sensitivity analysis is
first discussed for an arbitrary integral functional of generalized stress, strain and displacement and
boundary domains. The optimality conditions are next derived. The general theory is illustrated by
three examples of optimal design of ring-stiffeners in circular disks and plates and of rib-stitfeners
in a rectangular plate.

1. INTRODUCTION

In the present work, disks and plates subjected to stretching and flexure are considered
within the assumptions of small strain theory. The stiffening ribs are assumed to be intro-
duced within the disk or plate domain in order to reduce deflections or stresses. The shape
of such interior ribs and their cross-sectional arcas may vary and sensitivity of any response
functional with respect to this variation is to be determined. Next, the optimal design
problem is considered for which the optimal shape, position and cross-sectional stiffness of
the rib is sought in order to minimize the objective functional.

The present formulation constitutes an extension of a class of problems for which an
optimal point support reaction on structures was to be determined, cf. Mroz (1980, 1987).
Instead of point action, a stiffener exerts a line action inducing traction discontinuity along
the rib. This discontinuity is related to forces transformed by the rib through equilibrium
conditions. The variation of rib shape will thus correspond to variation of a line of traction
discontinuity within the plate domain. The class of problems of sensitivity analysis with
discontinuity lines was briefly discussed by Mroz (1986) where three types of discontinuity
surfaces were introduced. In this paper, a detailed analysis will be provided for both
stretching and flexure of rib-stiffened plates for which both sensitivity expressions and
optimality conditions will be derived. Though stability and vibration problems are not
treated here, the analysis can easily be extended to these cases, as it has been done by Dems
and Mroz (1989b).

In gencral, the design sensitivity of any arbitrary functional specified over structure
domain can be obtained by two approaches. The direct sensitivity method requires an
additional solution of boundary-value problem for cach particular variation of design
variable or parameter. The adjoint state method requires only one additional solution of
an adjoint problem for specified functional independently of design variations. These two
approaches have received considerable attention in the literature, cf. Choi and Haug (1983).
Dems and Mroz (1984). Choi and Seong (1986), Haber (1986), Mroz (1986). Dems and
Haftka (1989) and others. The choice between these approaches depends on number of
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Fig. 1. Thin plate stiffened by a rib.

objective functionals and design variations, and also on the relative difficulty of obtaining
adjoint or direct solutions. In this paper. only one objective functional is considered and
therefore the adjoint state method will be applied to derive sensitivity expressions for
arbitrary variations of stiffener cross-section and shape. In this sense, the present analysis
constitutes an extension of previous works by Dems and Mroz (1984, 1987, 1989a).

In Section 2, the equivalent model of a stiffened plate will be presented and in Sections
3 and 4 the sensitivity analysis for disks and plates will be carried out. The optimality
conditions are gencrated next from sensitivity expressions in Section 5. Several illustrative
examples are presented in Section 6.

2, EQUIVALENT MODEL OF A STIFFENED PLATE

Following Washizu (1975). consider a thin plate with the plane middle surface and
introduce a fixed Cartesian reference system with the x,, x.-uxes lying within the middie
surface and the xy-axis being directed normally to the middlc surface. The transverse
boundary surfaces of the plate are cylindrical and parallel to the x-axis.

Assume the plate to be stiffened by a rib of an arbitrary shape and a cross-scction
symmetrical with respect to the middle surface (Fig. ). Denote the plate domain by
Q= Q, U}, where Q) and Q. are sub-domains specified by a rib intersecting the boundary
S. The rib axis [ lics within © and may have its end points on S. For convenicnce of the
subsequent analysis, introduce a local right-handed rectangular coordinate system n, t. b
along S or [, such that n is vector normal to S or I' pointing in the exterior of Q or into
Q,, tis tangential to S or I', and b is normal to .

The plate can be subjected to a distributed lateral pressure p per unit arca of the middle
surface, directed along the x,-axis, and to body force [ acting within the x,, x,-plane. On
a portion of the plate boundary S, generalized forces per unit length of the plate boundary
are specified. With respect to the local system n, t, b, we have, cf. Fig. 2a,

2 v,
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al b)
Fig. 2. Generalized boundary tractions (a) and stresses (b) for a plate.
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() . [0
T={m}' ““{M} on 7 @

where N, and N, are the in-plate tractions acting along the t- and n-axes, § = V+ M,
denotes the generalized shear force acting along the b-axis, while M, is the normal bending
moment acting along S. The twisting moment and the boundary shear force are denoted by
M., and V. On the remaining portion S, of the boundary S, the homogeneous displacement
conditions are imposed. namely

i, . W
ﬁ={_}=0, w={_ }:O onS, @3]
U, W

where #,. i1, are the in-plane displacements in the directions of the ¢, n-axes, and w denotes
the deflection of the middle surface in the x,-direction. The comma preceding an index
denotes partial differentiation in local or global reference frames.

Note that for a linear case, the body forces f and in-plane forces N.. N, yield the
stretching of the plate. On the other hand, the lateral pressure p with generalized boundary
forces Q. M, yield plate flexure. These two modes of deformation are not coupled and can
be treated separately. The generalized stresses in stretching and bending per unit length of
x, and x, lines are defined as foliows

N, M,
Q=4(N, . M=<dM, 3)
NI2 A’Ilz

where Ny, N,, Ny, are the in-planc stress resultants and M, M,, M, are the bending and
twisting moments. The shearing forces are denoted by ¥, and V,. The corresponding
generalized strains are

&y R W,
q = ‘;2 I T = Ty = - ‘V,z'_y (4)
€2 L2 W2

where €, €., £, are the in-plane strains and |, .. 1 denote the curvatures and torsion
of the middle surface.

Introducing a rib along the line T, the field of internal forces is redistributed so that
discontinuitics occur along I'. This redistribution will be treated within the plate theory,
thus neglecting local effects near the rib. The rib is treated as a plane curvilinear arch with
free or supported ends A and B subject to stretching, bending and torsion due to the external
loading corresponding to discontinuities of internal forces within the plate along the curve
[. This loading is related to the generalized stresses within the arch through the equilibrium

> A
Aﬁlf‘

Fig. 3. Model of a stiffened plate.
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equations. The generalized displacements of the arch are the same as the respective plate
displacements along . The plate stiffened by a rib is thus approximated by two domains
Q, and Q. separated by the line I of strong discontinuity of generalized stresses (Fig. 3).
The boundary value problem can be solved for a specified geometry, loading and
material properties of a plate. Consider now a more complex problem when the cross-
sectional properties and the shape of rib are not specified in advance. The major question
can be posed as how generalized stresses. strains and displacements or some global func-
tionals are modified due to cross-section and shape variations of the rib. Assume the cross-
sectional property and the shape to be dependent on a set of material design functions y,(x).
(/=1.2..... L). xeI, and shape design functions ¢, (x). (k = 1. 2), xeI'". Our purpose is
to express explicitly the variation of an arbitrary functional in terms of variations of 7,(x)
and ¢, (x). ¢f. Fig. 3. [t is also assumed that the plate domain may undergo the infinitesimal
transformation d¢(Q) where d¢ is a differentiable vector field satisfying the conditions

0P(Q) = (") forxel
dp-n=0 forxes. &)
Thus the external boundary does not undergo any normal shape transformation. On the
other hand, when the rib penetrates the external plate boundary, cf. Fig. 3, the tangential

shape transformation may occur. The additional constraint on the vector field d¢ at points
A and B of T 1s then to be imposed. namely

dp +opcltgx=0 atAorB (6)

where o¢h, and d¢p, are the tangential and normal components of rib variation, and % denotes
the angle between the rib and the external plate boundury. When « does not vary during
the transtformation of rib shape, the following condition must be satisficd at A and B:

I ~2sin” :
op,.. = (1\'\ . —/\"r)r)([),, atAorB (7)

SH %

where K¥ and K denote the curvatures of S and T at A or B, respectively.

Duc to an infinitesimal transtormation of rib shape. variation of orientation of the
local coordinate system n, t, b, and of rib length and its curvature occurs, that is (cf. Dems
and Mroz, 1987)

St = n(KSp, +66,.). on= —t(Ksp, +0p,.), b =0
0D = (5¢,., — Kop,) AT, 0K = K, .0, + K 3¢, + b, (8)

where s denotes the rib parameter. d denotes the total variation of any vector quantity, and
d denotes the variation of any scalar quantity.

3. SENSITIVITY ANALYSIS FOR DISKS WITH VARYING STIFFENING RIB
In this section, we shall consider a disk or plate subject to stretching in its plane. The
plate is loaded by the body forces f within its domain, by surface tractions T on Sy and

with vanishing displacement it = 0 on S,,. Denote by v, £ and E the displacement, generalized
strain and stress field along the rib axis. where

r, £ - N
T R

Here .. ¢, denote the tangential and normal components of the displacement vector on I,



Optimal design of rib-stiffeners in disks and plates 977

¢ and - are the elongation and curvature of the rib element and N, M denote the cross-
sectional normal force and bending moment. The relation between the generalized strains
and displacements has the form

e=rv,,—Kv,., z=-0,,=—(,,+Kv,)., (10)

where K denotes the rib curvature. 8 = ¢,.,+ Kt, is the angle of rotation of the rib cross-
section and s denotes the arch parameter.

The displacements and generalized strains and stresses within subdomains Q, and Q,
of the plate are denoted by u'. v, q', q% and Q', Q7 respectively. It is obvious that the
following kinematic relations between the displacements and strains of the plate and rib
hold along I':

u'=u=v, g =¢=¢ onl an

where ¢, denotes the strain component in the direction tangential to I' within subdomain
Q, of plate. The generalized stresses E within a rib are related to the jump of internal forces
within plate domain along I" by the equilibrium equations

N.—M.K-[N.]=0
NK+M,,—[N,] =0 (12)

where [N, [ and [N, ] denote the jumps of tangential and normal components of internal
forces calculated as the difference of respective components in subdomains Q, and Q; along
I™ (see Fig. 4a), and M, = @ can be regarded as the cross-sectional shear force within a rib.

Is now assumed that generalized stress-strain relations within plate and rib domains
are given in the general non-linear form

S

b}
Fig. 4. Generalized forces acting along rib for stretching (a) and bending (b) of a plate.
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Q =S(q). X =A(e. 7). (13

In the case of elasticity. S and A are generated by a potential rule associated with the specific
strain energies. The incremental form of eqn (13) is expressed as follows

0Q = D-dq. O = E-de+L'd;, (14)
where
D=7S/0q. E=cACe. L'=¢7ACy. (13)

For a stable elastic material, D and E are symmetric and positive definite tangent stiffness
matrices, whereas L' represents the variation of stress within the rib due to the variation of
material design functions y,.

3.1. Sensitivity unalysis for an arbitrary functional
Let us now consider the functional

G = J“{’(Q, q.f u) dQ+J/1(T. u) dS+J(D(E. g, y)dr (16)

where the function it depends only on the local components of surface tractions T and
displacements won S, te. It = (N, N,. u,. w,). We assume furthermore that W, 4 and @
arce continuous functions of their arguments, and domains of integration €2, S and I" depend
on transformation vector ficld ¢(x) associated with modification of the shape of the rib.
The variation d¢(x) satisties the conditions (5) and (6).

Rewriting the functional (16) in the form

G=G +G.+G, = qlv dQ, +J h dSl)+<J‘P dQ_‘+J h dS:>+J<D ar (1mn

where Q =Q, 0 Qs and § = 8§, U S, we note that the functionals ¢, and G, are defined
over domains Q, and Q, with varying boundary parts [, whereas the functional G, 1s defined
along planc arch T of varying shape and material properties (see Fig. 1a). To derive the
first variation of functional G we shall follow the analysis presented by Dems and Mroz
(1984, 1987) and Mroz er al. (1985). Following then Dems and Mroz (1984, 1987), we
introduce the adjoint stiffened plate of the same shape as the primury one. but satisfying
the boundary conditions

T™=h, onS,, w=—-hy ons, (18)

where S, denotes the portion of S where T is specified for the primary plate, while S, is the
remaining portion of § where i is prescribed. The adjoint plate is subject to imposed ficlds
of body force and initial strain and stress specitied by
=Y, q"=%¥, Q“=%¥, withinQ uQ,
T =®, alongl. (19
The stress ficld Q* and E¢ within plate and rib domains arc related to strain ficlds q“ and ¢
by the relations
Q' =D"-(q"—q")~Q" withinQ, uQ,

o= EI‘, (8“—5”')—-:”‘ along r (20)
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where D7, E” are the transposed stiffness matrices specified by eqns (15), and Q¢, I satisfy
the equilibrium conditions, whereas q°, & are the associated strain fields which follow from
the displacement fields u®, v*. The jump of internal forces within the adjoint plate along I’
is related to the generalized stresses £ by the equations similar to (12), while the kinematic
relations along I' have a form similar to (11).

The solutions for primary and adjoint plates enable us to express the variation of
functional G explicitly in terms of variations of material and shape design functions of the
rib. Consider first the variations of functionals G, and G, of (17). Then, following Dems
and Mroz (1984, 1987) and taking into account conditions (95), it can be written

G, = j (W.q 0Q+\W. Sq+ W, 5T+, -u)dQ, + J Yog, dI'

+ J.(h.,v"ﬁN,.s +h.y 6N, +h,, ou,+h,, ou,+ho¢,.)dS, i=12 (21)

where § denotes the local variation (i.e. for unperturbed domain) of state fields. Making
use of (18)~(20). eqn (21) can be presented in the form

8G, = J (q" - 5Q~ Q- Sq+ - Su+ W, 51 dQ, + f Vs, dT"

+ J‘{hmv‘" (($ Nm - Nm' w‘S(b.v) + h'Nn ((5 Nn - Nn v.véqu) + hw‘ ((5“! - “.v!rt).(nbx}

+h., (Ou, — 1, 64,) + (hd$,).]dS, i=12. (2

Using now the virtual displacement principle for statically admissible stress ficld Q“ and
the kinematically compatible displacement ficld Su as well as the virtual stress principle for
ficlds 5Q and ¢, the first integral on the right-hand side of eqn (22) can be rewritten in the
form

j(‘ L) dQ, = J(u" + W) 6f dQ, +J‘(5T' u' —T*-Ju) dS,

+J(5T'u"-T"'5u)dr i=1,2. (23)

The iocal v.mdtmns 8T and Ju appearing in eqn (23) can be now replaced by the total

variations JT and 6u which. take into account not only any variation for unperturbed
domain {, but also the variation due to shape modifications of Q,, S and I'. Since we have
(cf. Dems and Mroz, 1984)

du = Su+u, o,
ST = 6Q n+Q-dn = 5T+Q. - n8¢, — Q- (KSD, +56,..) (24)
where ¢, (k = 1, 2) denote the components of transformation field ¢ with respect to fixed

Cartesian coordinate system (x,, x,}, K is the boundary curvature and Q is treated as a
symmetric tensor of generalized stresses, then eqn (23) can be reduced to the form
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j (..)dQ, = {(u“ £, 5TdQ + J{u“ ST =T.06)—T - (Su—u.dp.)

+(T-u'd¢,).]dS, + J[u" : (ST -T.00)-T": (Ou— u,0d) + (T u'ép,).,

H(w—-Q g —T - wK+T a', +Tu,)d,]dl =12 (25

Since the boundary tractions and displacements are specified with respect to the local
coordinate system (n. t) [cf. eqns (1), (2)]. then it 1s more convenient. instead of their total
variations with respect to a fixed coordinute system, to consider their corotational variations
with respect to coordinate system (n. t) moving together with transformed boundarv T or
S. cf. Dems and Mroz (1987), i.e. the variations which do not take into account the rotation
of the coordinate system during the transformation process. In other words. tf we denote
by N, N, and NX ., N} the components of surface tractions in mitial and actual con-
figurations. then the corotational variations of surfice traction are equal to differences
N¥e—= N, and NE — N, respectively. Since these variations were denoted by 4.V, 0.V, and
du,, o, we can write the following relationships between the total and corotational
variations of surface tractions and displacements

o

oN,,

= 0N, — NV (KSP, +5P,.). 0N, = SN, + N, (Ko, +dp,.)

o

o, = du, AR + 0, N Ou, = du, +Hu{ KD+ I, ) (26)

In view of (23) and (20). the sum of vartations of functionals 7, and 7, defined over domain
Q = Q,w by using eqn (22), can be expressed as follows

06 406G, = f;(f:,_\.m +UYON,, = N, o) + (G +uoN, =N, dp )l ds,

b()ll +( \r:\L \n+:i5V::H“nn

n

+J<:&()'N,,\Ju +l ON,,}U,,——&N,,\ Jml —-‘ N

g oar 1 . Joar 7 9
- l f\’u\n J‘”\ - i‘ N ney ]“n)‘)(f’ + ( / ‘“d +. fn = ‘\ ‘ ‘Nm l
~ [N K = [N K+ [N, |+ Vo, + Nty i+ W DO,

e 2 . Toa A D any it
(N = TN e+ TN Q= [ V31000, ) AT + O N+ [N e S 27)

% denotes the difference of enclosed quantities at points B and A calcutated along
[, and it was assumed that the surtuce tractions and displacements along external boundary
S of primury and adjoint plates are continuous at points A and B.

The variation of functional G, within rib domauin can be caleuluted by following the
analysis presented in Dems and Mroz (1987). Let us note that the ribs within primary and
adjoint plates are treated as plane arches loaded by the jumps of plate internal forces [T
and [T] along I". Using the concept of corotational variations, the first variation of G, can
be uprmwd as follows (¢f. Dems and Mros, 1Y87)

oG, = J [hc 0X 4+, - e +D(Ob,., — Kdp,) +(l>‘_‘.}(o’~,-, + 3,0 )] dl (28)

where &7, denotes the local variation of stiffness function 3, for unperturbed arch shape,
and lol‘ll variation 8, = o+ v, Using now eqns (14). (15) and (18)~(20). eqn (28) can
be rewritten in the form
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3G, = J[z“ 05— X4+ Se+ O(5p,., — K5¢,)] dT + f[cb.,, — (" = ®.5) - LN +71.,0¢,) dT.
(29)

Eliminating now corotational variations 6Z. d¢ and dv by means of virtual stress and
displacement equations derived by Dems and Mroz (1987), after some transformations. the
first variation of the functional G, is finally expressed as follows

oG, = j( - KéN,,,]u“f - ﬁéNﬂEu‘; + [1\/‘,‘”}61(‘ + [N‘,‘,ﬂéu,,) dr

¥ [ (Vs L+ TN Tt — [V s = [V 000 )0, A+ [V 2ty + Nuty = My = M 1) o,

—(N%+ M+ M0+ M =[N, Jut — [N, Jus + D)K ]S, + [®.., — (e' — D.g) - L] - &7} AT
+ Nt — Nott! 4+ MO, + M 074+ M +0)0d, + (Nu, + Ny — M, — M, 1Yo,
— (N, + Nt = M, — M), 08,150 (30)

In writing eqn (30). we assumcd that either the free end of the rib does not carry the
concentrated load or the end is rigidly supported. and used the conditions (11).

Equations (27) and (30) enable us to determine the variation of functional . Adding
(17) and (30) and climinating the jumps of internal forees along [ within primary and
adjoint plates by means of arch cquilibrium cquations, the first variation of functional G
with respect to shape and material variations of a rib is expressed as follows

3G = J(u“ +'.0) - 5T dQ + J[(/:,NM +u)ON,, = N,..00,) + (hy, + 1) (0N, = N, 34| dS,
+J e+ A= N Jes + [ Naen ]+ [ Nae ]+ NO“ L+ N0, — (M),

—(M*.8)., = (Ne+ M“r)K+[¥]-0K} ¢, dT + J[(b.},l — (g —h,y)-L)- 5, dl

+{(NKu + Ny + (M8 + MO, + MY + @), + (M &' + M, e — NO' — N“O)3¢p,

+ (Nu, + Nut = M u, — M ), )18 = 3G, + G, 3

where 0G4 and 0G, denote the variations of G duc to shape and material variations of a
rib, respectively.

Thus, the variation of G is expressed explicitly in terms of variations of shape and
material functions of a rib, as well as the solutions for primary and adjoint plates. The
second integral on the right-hand side of eqn (31) expresses the variation of G due to
variation of boundary conditions along the outer edge of plate, whereas the last term in
square brackets expresses variation of G due to shape variation at both ends of rib within
primary plate. When either the rib is closed or its ends are perpendicular to the outer edge
of plate, then this term vanishes. Note furthermore, that the nonvanishing tangential
viriation d¢, on S can be limited to these parts of S which are penetrated by the rib
ends.

3.2. Sensitivity analysis for complementary and potential energies
Consider now a particular case when the functional G coincides with the comp-
lementary or potential energics of the plate and derive their first variations associated with
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shape and stiffness variations. Such functionals occur in problems of global compliance or
stiffness design.

Let us consider first the complementary energy of a disk stiffened with the rib which
1s closed or perpendicular to its outer edge. This energy equals

~

rn, = J W(Q)dQ+ [W(‘:. y)dlr (32)

where W and W denote the specific stress energies per unit area of a plate and unit length
of a rib, respectively. Comparing (32) with (16), we easily observe that

W=W inQ h=0 onS. ®=W alongl (33

and then, according to (18, 19). the adjoint plate has to satisfy the following boundary
conditions

T*=0 onS, u=0 ons, (34)
with the imposed initial fields

f" _ 0V qm = VV'Q = q‘ Qm = 0 in Q
&t = W,E =g X"=0 alongl. (35)

Thus, the state fields within the adjoint plate are

w=u ¢=q. Q'=0 inQ
vi=v, ¢ =g Y=0 ualongl (36)

and the first variation of I1,. in view of (31), cquals
o, = Ju-Jf dQ+ J [, (3N, = N,..0$,) +u, (SN, —N,..5¢.)]dS,
+J{[m] u—[NJe, + NO, — (M. 6). +[W] - WK}, dl"+j W, dy,dr. (37)
Assume now that functional G coincides with potential energy, that is
G=1I, = f[U(q)—f-u] dQ—JT-u ds,-+j0(s, y)dr (38)

where U and U denote the specific strain energies. Comparing (38) with (16), we have
¥=U~fu inQ h=0 onS, h=-Tu onS, ®=0 alongl' (39)

and then, according to (18, 19), the adjoint plate is subject to the following boundary
conditions

T =h,=-T onS,, @=0 onsS, (40)

and the imposed fields of initial stresses and body forces
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fu = —f., q.n - 0. Qut - Lr.‘ - Q iﬂ Q
=0 T=0,==C along I'. 41)

Thus, the state fields within the adjoint plate are

= -IX 42)

and the first variation of [1,. in view of (31), equals
o, = - f u-§fdQ— J (4,(0N = N, 00} + (SN, — N,..09)] dS 1
+ J-{ —[Nustns ] = [Nuta] = MO+ (M. 6),+(Ne+ MK+ [U]=[f] -u
~UK}5¢,dl + f 0. 57dl. (43)

Noting that U+ W = Q-qand U+ W = E-¢, it is easy to prove that 5I1, = —dI1,.

4. SENSITIVITY ANALYSIS FOR PLATES IN FLEXURE

In this scction we shall consider the case of bending of a plate shown in Fig. 3. The
problem of optimal design of discrete stiffeners in plates was treated by Samsonov (1978).
The present analysis, however, differs from that in Samsonov (1978). The optimal dis-
tribution of circular ribs in plastic plates was determined by Koztowski and Mroz (1969).
Optimization of denscly stiffened plate was analysed in Rozvany et af. (1982, 1987) by
assuming the equivalent orthotropic model.

The plate is subjected to a transverse load p, whereas either generalized tractions R or
displacements w are specified on S. The rib within plate domain is simulated by a plane
arch I with free or supported ends A and B, subjected to bending in t, b-plane and torsion
inn, b-plane. Denote by v, e, X the generalized displacement, strain and stress fields specified
along the rib axis, where now

= oo i) == {0k

Here v denotes the deflection of a rib in b-direction, and @ is the angle of cross-section
rotation along r-axis, =, and M, denote the bending curvature and moment, whereas .,
and M, are the torsion and cross-sectional twisting moment. The relations between the
generalized strains and displacements have the form

zy=3,,+K0, » =0, ,~-K3 45)

where 3 = v,y is the angle of cross-section rotation along n-axis. The generalized dis-
placements, strains and stresses within subdomains Q, and Q, of the plate are denoted by
w', wl 2! z?and M', M?, respectively.

[t is obvious that the following kinematic relations between the generalized dis-
placements and strains of the plate and rib hold along I'

’s

2

A 2 \ . 2
v=w'=w J=r,=w', =wl, O0=—-w', = —wl,

- S ! 2 . 2
Th = "".u—K“v: =Ty = ey, T = —("'-ru+K“'u) = 7/‘.\"11 = '7;’ . (46)

»m
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The generalized stresses within a rib are related to the jump of internal forces within plate
domains by the equilibrium equations of the form

7,,-[0] =0, M, ,+MK+T=0, M, —MK-[M]=0 (47)

where [M,] and [Q] = [V + M,,.,] denote the jumps of plate bending moment and gener-
alized shear force along I', and T denotes the cross-sectional shear force within the rib.

We assume, similarly as previously, that generalized stress—strain relations within plate
and rib domains are given in the general non-linear form (13). The incremental forms of
stress—strain relations are expressed similarly to (14).

4.1. Sensitivity analysis for an arbitrary functional
Similarly as in Section 3, consider now the functional

G = J Y(M, z, p, w) dQ+ J A(M,. Q. w.,, w)dS + J (L, &, y) dT". (48)

Rewritting the functional (48) in the form

GC=G+G+G, = (f‘l’ de2, +JI: dS;)-}-(J“P dQ;-%—jh dS;)%—J(D dl' (49

its first variation equals
0G = 0G, +0G,+5G,. (50)

Following the analysis presented in Section 3, we introduce now the adjoint stiffened plate
of the same shape as the primary one and subjected to the saume kind of boundary conditions
which are specified as follows

W= —hy, W,=h, onS, 0*=h, M'=—h,, onSr (s1)

where S, and Sy are the supported and loaded parts of plate outer edge, respectively.
Furthermore, the adjoint plate is subject to imposed fields of initial strain and stress specified
by

¥ = \P,&‘, M‘” = \P,, Withiﬂ Q = Q! UQ2
=0, IY=¢, alongl (52)

and is loaded by the transverse pressure

p*="¥,. withinQ. (53)

The stress field M? and £° within domain Q and along [" are related to the strain fields =*
and ¢° by the linear relations, which are similar to (20). Obviously, the fields M* and X°
satisfy the equilibrium conditions, while =* and &* follow from the displacement fields w*
and v*. The kinematic relations along I have a form similar to (46), while the static
conditions are similar to those expressed by eqns (47).

Using the solutions for primary and adjoint plates we can express the variation of G
explicitly in terms of material and shape variations of the plate rib. Following the analysis
presented in Dems and Mréz (1989a), derive first the variation of functionals G, and G, of
(48). Thus, we can write
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éG‘ = J.(W,M M+ ¥..* 0'.7:+ “P.,SP'*' ‘vasw) dQ, + fW5¢n dar+ J'[hvu.(éMn - M~'15¢:)
+h~Q(5Q - Q136¢:) +hm,.(6wm - W,,“(s¢,) + h-w(éw_ W,,6¢,)] dS, + h6¢stJ' i= lv 2 (54)

Using now (52). (53) and constitutive equations for primary and adjoint plates and applying
the virtual displacement and stress principles, the first integral on the right-hand side of
eqn (54) can be rewritten as follows

J(. .)dQ, = j(z" “SM—M°-6z+W¥,,0p+p°ow)dQ, = J(w" +¥,,)0pdQ,
+ J(é’ Vw* —SM, w,— Viow+ M%ow,) dS,+ J(S VW —SM ", — Veow+ M230w,)dl  (55)

where M,, = M;n;and V = M, n,.

Similarly as in Dems and Mrdz (1989a), we can now eliminate the local variations
oM, and 8V in eqn (55) by means of corotational variations of generalized boundary forces
M, and Q. Thus, after transforming of eqn (55) and substituting it into eqn (54). the sum
of variations of functionals G, and G, equals

0G,+0G, = J.(W“ +'¥,,)dp dQ2+ J[(hnr, ~ w9 (OM, — M,..0¢,) + (hg+w)(0Q — Q..09,)

+ (hvw,,, + M:)(()‘W.,, - Wvu(sd).l) + (hm‘ - Q”)((SW - w‘16¢:)] dS

+ {‘IM:;B(SW_ [[(SMM]]W“ - (I[M,,,]]W"v..'{" IIM:_,]]W,,)(S¢,} IR" + j‘{[ﬂp]]w" - EMJ]]'L';‘

+ 2[Mn:]]:’::: + ‘IQ]]W”W + HQ“HWM + HM:IHD - ([[QH"”‘I - [[M,,HW",,,)K— ([Mn]]wuu)v.r

—([M2]w.). 100, + ([ Mo ]w., = [@uc]w’ — [ M ]wonc +[ Q] w086, + [6Q W

—[oM ., —[Q“Tow+[M:]éw,.} AT + {[ M2, Jow —[6M,,]w* + ([Q]w* —[M.]w"..

- IIM,“HW”” - ﬂMﬁx;ﬂwu)étb: + (ﬁM,,]]W“,I - ﬂMru]]w”m + IIM:BW': - I[M:,HW,,,)6¢,,I,B\; (56)
Consider now the variation of functional G, of (47) defined within rib domain. This variation
can be obtained in the similar way as that presented in Dems and Mréz (1987) and Section
3. Thus, 4G, can be written first in the form similar to (28). Next, after using (51), (52)
and the linear generalized stress—strain relation within the rib of adjoint plate, it can be
retransformed to eqn (29) where now the generalized strain and stress have the components
defined by eqn (44). To eliminate the variations X, de and dv in eqn (29) we have now to

formulate the virtual stress and displacement equations for an arch of varying shape
subjected to bending and torsion. To do this, let us denote the generalized load acting on

the rib by
{5

and consider the identity following from (45), (47) and (57)
IZ-sdr—Jy'vdF—(Tu+M,0+M,,9)lR? = 0. (58)

The first variation of eqn (58) is expressed as follows :
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J.(52-8+E'<5s——5y'v—,u'6v) dI'+J Teoe—pu-v)(o¢p,.,— Kéop,) dI
—[6(Te) + 6(M,0) + 5(M, )15 (59)

The virtual displacement equation can be obtained from (59) by eliminating the terms

involving the variations of static fields, whereas the virtual stress equation requires one to

eliminate the terms involving the variations of kinematic fields. Taking the variational form

of equilibrium equations (47) and kinematic relations (45), and applying the results to eqn

(59). we can write finally the following virtual displacement equation for primary static

fields and adjoint kinematic fields

J(E“'dc—p" <ov)dl = f{[M;:z,,ﬁ—M;‘.,;, —(M}.,+M/K)IK—(M!3—-M;0),,]00,

+ Moy +Mir,, —qv,—m0.)0¢,} AU+ [(M!3— M40),,0¢,— (M3 —Mif)od,.,

~ (MO, + M3, + T, )b, + Mid3+ M50+ T*50]|%  (60)

and the virtual stress equation

J((sz:-s“ —dp-v)drl = f{[(M,. M) A (M, + MK K — (qu + mO) K)o,
F My Myrt =gt —m 09)3¢, )} AT + [ — (M, = M,0)..5¢, + (M,3° — M,0°)56,.,

— (M I+ MO+ T, 0)oh, + M3 +OM0* +5Tv*]|8.  (61)

Substituting now eqns (60) and (61) into eqn (29), the first variation of functional G, for
the case of bending and torsion of a rib can be written, after some transformations, in the
form

oG, = J{éqv”-\kb’m()“—q“év—m“é()-(q,‘u“+m,,()“-—q“v,_,—m”(),_,)éd)_,.
+ I MI =M+ MI—-M0),,, +[(M,.,+ MK +(M,,,+ M!K)3—qu* —mb*
—Miry—Mir, ~OlK} 5, dT + {[d)..,, — (& —®,5)- L) &y, dT +[(M, 3 — M,0°

+ AI‘;S - 1‘/Id0)‘ré¢n - (Alhnsu + ‘t’nx()u + Tvrl'.” - A’I:S" - M;'ov.r - Tavts - (D)6¢1

s

+ MO+ MO+ STe" — Mid3 — M50 — T*5c]|jr. (62)

The expressions (56) and (62) enable us to determine the variation of the total functional
G. Substituting these expressions into eqn (50) and using the conditions (46), (47) and (57),
as well as noting that the rib shear force at points A and B equals (cf. Fig. 4b)

T=[M,] +[M.}° (63)

the first variation of G can be expressed as follows:
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6G = J'("ﬂ + va)o'P dQ + J‘[(th, - W‘:)(&M" - an:5¢s) + (h‘Q + W"')((SQ - Q’15¢:)] d‘gT

+f{ [¥W]-OK+[p]n - [M,]z2 - 2[ M, ]2 + [Miz,] +46° + (m3),,
+ g0+ (m3)., + (M, = My0° + M3 — M30).., + [(M,., + M.K)3 + (M3, + M?K)9
—Myzy—M{z]K}60, dF+J[¢,7, — ("= ®,5) - L'} 67, dT +[(0 + M}3,, + M10,)60,

+ (M0, — M3, + M0, — M:3,)d¢,]15r. (64)

In view of eqns (45) and (47) we can write the following equality valid for any static and
kinematic fields

q9+ (mg)'x + (All‘9 - Mhe)-x.r + (thx + M!K)'QK = (Ml-th)-s - (Mlvzl)w.y + TII' (65)

Using (65) in (64), G can be finally expressed in the form
oG = f(“'“ + ‘V.,,)Jp dQ+ f[(ll‘lw" - W”,,,)((SA’[,, - Mms‘5¢x) + (th + Wa)((sQ - Q~16¢:)] dST
+ f ([¥]-OK+[p]w" ~[ M)t = 2 M, ]t + [ Mice, ]+ (Mo — Myt + My — Miz)).,

+ T+ T~ (Miry+ M r)K}5¢, dr+f[(b.7l —(e*—®,p) - L] §y,dl

F{(D+ MEG. + MI0.)5, + (Mu0",, — M3, + M0, ~ M*3.)8,]1% = 5G, +5G,.
(66)

Thus, the variation of G is expressed explicitly in terms of variations of shape and material
functions of a rib, as well as the solutions for primary and adjoint plates. The second
integral on the right-hand side of eqn (66) expresses the variation of G due to variation of
boundary conditions along loaded part S of the outer edge of plate, whereas the last term
in square brackets expresses the variation of G due to shape variation at rib ends within
primary plate. When the rib is closed then this term vanishes. Note, furthermore, that the
nonvanishing tangential variation d¢, on S can only be limited to these parts of S which
are penetrated by rib ends.

4.2. Sensitivity analysis for complementary and potential energies
Derive now the first variation of complementary and potential energies of plate associ-

ated with shape and stiffness variations. Assume then that the rib is closed or perpendicular
to the outer edge of plate and consider first the complementary energy

I, =jW(M)dQ+jW(E, v dar 67)

where W and W denote the specific stress energics of plate and rib. Comparing (67) with
(48) we have

¥=W withinQ, h=0 onS, ®=W alongl (68)

and then, according to (51), (52). the adjoint plate has to satisfy the homogeneous set of
boundary conditions and is subjected to the imposed fields of initial curvatures
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' =Wy=r withinQ, ¢ =HW;=¢ alongl. (69)

Thus. the state fields within the adjoint plate are

w'=w, ‘=,

M’ =0 withinQ

=0 alongl (70)

and the first variation of I1,, in view of (66), equals

oM, = f wop dQ + f (W(3Q — 0..0¢,) —w,,(dM,— M,..00)]dS + J W ]-WK+]plw

- i‘[/‘[“i‘l.r\ - 211‘[,”3.1',” + M,y — M, 7).+ T.r,:‘()-(f),, dr+ J W..;I(;}‘/ dr. (7h

Note that since the rib is closed or perpendicular to the outer plate edge. then the boundary
terms at points A and B on the right-hand side of eqn (66) vanish.

Assume now that the functional G coincides with the potential energy, that s

G=11, = j[(/(.r)—p\;'] dQ«J‘(Qw—;W,,w.,,) dS,»+JU(£. ydl (72)

where U and U denote the specifie strain energies. Comparing (72) with (48), we can casily
observe that

W=U=pw withinQ, h=0 onS,. h=0Qw-Mw, ons,

O =0 ualongl

(73)
and then, according to (S1), (52). the adjoint plate is subjected to the following sct of
boundary conditions

w'=0 onS, Q'=-~-0. M;=~M, on§, (74)
and the imposed ficlds of initial generalized stresses
M= U, =M withinQ, “=0,=X alongT. (75)

Morcover, the adjoint plate is loaded by the lateral pressure that, in view of (33), equals

pl="Y,, = —p within Q. (76)

The state fields within the adjoint plate are then

w'=0, =0, M= =M, v =0,

=L (77)

and the first variation of 1, in view of (66), takes the form

oft, = — Jn'()'p dQ + J-[n',,,(&w,, — M, 0¢,)—w(3Q —0,0¢ ) dS,+ J}EU “ - Epjw—— UK

-~

- g:\r["_r,,ﬂ — (M., = Myr ), —Tr +(Myzy+ Mr)K}0p, dT + J (7.;.[5'/'1 dr. (78)
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Since U+ W = M- .rand U+ W = Z-¢itis easy to prove that o[, = —4[1,.

5. OPTIMALITY CONDITIONS IN OPTIMAL DESIGN OF RIBS

The typical optimal design problem involves minimization of the cost functional of
a structure subject to the global constraint imposed on generalized stresses, strains or
displacements. This global constraint can be expressed in the general form similar to (16)
or (48). The other geometrical constraints, which can be additionally imposed, will not be
considered here. Note that the constraints imposed on local values of stress, strain or
displacement can easily be converted to the global form (16) or (48) by using the Dirac
delta function. Similarly. any constraint imposed on maximum values of stress, strain or
displacement components can also be expressed in the global form, as it was shown, for
instance, in Mroz et al. (1985) or Dems and Mroz (1989a).

In what follows. we assume that the cost of plate domain Q is fixed and only the cost
of a rib can vary due to change of its shape and cross-sectional properties. Thus, the
objective function can be expressed in the form

C= Jc(y) dS = min,, (79)
where ¢ is a specific material cost of a rib. The first variation of C now equals
0C = 0C, +0Cy; = J(‘., <y dS —J('Krs(b" dS+cd, |§{f (80)

where d¢, and d¢, denote the cost variation due to change of material propertics and shape
of rib, respectively. When the rib is closed or perpendicular to the outer edge of plate, then
the last term on the right-hand side of eqn (80) vanishes,
Assume now that the plate is subject to the global constraint of the form
G-G,<0 (80

where G is expressed by eqn (16) or (48) and G, is a prescribed quantity. To derive the
optimality conditions of problem (79), (81), we introduce the Lagrange functional

G' =G+MG—-G,+a%) (82)

where 4 denotes the Lagrange multiplier and x is a slack function. The stationarity condition
of functional G’ yiclds the optimality condition

0C = -G (83)
with the switching and constraint conditions of the form
la=0. 64G-G,+a%) =0, (84)
The optimality condition (83) can be rewritten in the form
0C, = —4i0G,, 0C, = ~/0G, (85)
where 6C, and 6C, arc expressed by eqn (80), while 6G, and 3G, are expressed by eqn (31)
for stretching of plate and eqn (66) for the case of its bending.

An alternative formulation of the optimal design problem would require the mini-
mization (or maximization) of G with the upper bound set on the structural cost, that is

SAS 25:9-8
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min (or max) G subject to C—C, £ 0. (86)
Introducing now the functional
G =G+i(C—C,+B) (87)

where A and B denote the Lagrange multiplier and slack function. we can obtain the
following set of optimality conditions

6G, = —idC,. 0G, = —idC,. if=0. SHC—C,+B)=0 (88)

which are equivalent to the conditions (84), (85).

6. EXAMPLES

In this section, let us consider three simple examples which should illustrate the
sensitivity analysis and optimal design for rib-stiffened plates.

Example 1. Consider a circular disk of radius r. with a central hole of radius r,. The
disk is stiffened with a circular rib of radius R and cross-sectional arca A (Fig. 5), and is
loaded uniformly by pressures p, and p, acting within the disk plane along the outer and
inner edges. The disk 1s made of lincar-clastic material with clastic constants E and v. Duc
to geometrical and mechanical symmetry, the nonvanishing stress components within disk
domain are radial and crcumfcrential stresses vV, and N, whereas the disk rib is subjected
to tension with the normal force V. The stress state within the disk domains Q, and Q. is
cxpressed as follows

f A
N,="'4B. N,=~-""%B i=12 (89)
r- r-

where A4, and B, denote some constiants, whereas the cross-sectional normal force within
the rib s related to the jump of radial stresses by the relation [efl eqn (12)]

N
IL[NI]]erIIrzR.—erler: —I{ (90)

The conditions of displacement continuity within disk domain yields the following relations
between the generalized strains within disk and rib

Ele k=l e =¢ 91

where ¢, denotes the circumferential strain component within €, and ¢ is the unit elongation
of the rib. In view of disk boundary conditions and eqns (89)--(91), the constants A ,, B,

Fig. 5. Rib-stiffened circular disk loaded by internal and external pressures.
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Fig. 6. Distribution of sensitivity of I1, versus varying rib radius (a) and generalized stresses for
stationarity point of TT, (b) for constant rib cross-section.

A,. B. and the normal force N can be determined as the solutions of the following set of
equations:

A, — A,
-~ =-p, — y = —p., ———+B~B:=——,
e + 8, Pi v + B; 14 R: + B, : R

b
x
%
=z

(l—-v)B,-—(l+v)2-':~=N. (l—v)Bz—(l+v)%§~= (92)

A
Consider now the complementary energy of a disk that equals
- R
n, = Jl%’cfﬂ+JPVdF = J (NJ,=2vN, N, +N)rdr

R . RNZ
+J (NL=2vN, N+ No)yrdr+ Ve (93)

and determine its first variation with respect to the position of the rib and its cross-sectional
arca. In view of (37), o[, is expressed in the form

on, = f[([[ W]—WK)op,+ W.,5y]dr. (94)
Assuming, for simplicity, v = 0 and noting that 3¢, = R and y, = 4, eqn (94) yields
£

oll, =2 {[—[N,|(R)+N,;(R)]N+ {}I‘;]éR—%_;—-O'A}. (95)

In studying the first variation of I, let us consider now three different kinds of variation
of rib cross-scctional area A. Assume first the constant rib cross-section. Thus, 4 = 0 and
the last term on the right-hand side of eqn (95) vanishes and the sensitivity of I, with
respect to R is expressed in the form

A R? 1= B:

dan A .
T Tf [V(N 1 + A 2 ) (96)

where 4,, A,, B,, B; and N are the solutions of eqns (92). Figure 6a shows the graph of
I1, and its sensitivity with respect to varying rib radius Rforr, = 1,7, = 6, 4 = A, = 2 and
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p./p, = 0.5. It is easy to note that [1, attains its minimum value for position of rib on the
outer edge of disk. whereas for value of R satisfying the condition dI,/dR = 0. [1, attains
its maximum value. For such position of the rib, the jump of normal stresses [.V,] = 0 and
the circumferential stress &, = 0, as it is shown in Fig. 6b, and then the normal rib force
vanishes.

Assume secondly that the rib cross-sectional area is inversely proportional to its radius,
namely

A="4 Sa=_ " asr=_"1sR 97
TR TR T TR 7

where A, is a prescribed quantity. Then. it follows from eqn (95) that

dn”—fN<2N At g _p 98
dR " E"\ A4 R: R ©8)

Figure 7a shows the graph of I, and dT1,/d R with respect to varying R for the same values
of ri. r.. A, and p/p; as in the previous case, while on Fig. 7b the graph of N,, ¥, for R
satisfying the condition dI1,/dR = 0 is plotted. We can observe that IT, attains a maximum
for the same value of R as in previous case, whereas the minimum value of IT, corresponds
toR=r,.

Assume finally the quadratic refationship between A and R, namcly

A= /i,,—k(Ra r'+r°). 5A = —2/<<1<— r‘+rc)¢sk (99)

where A, and k are the prescribed quantities. Then, in view of (95), the sensitivity of [T,
takes the form

dn,, b1 N A|+A1 N . rl+rC
e e e T — B, +2k - -y U 5
aR ENl:A R B, 2+ A‘R(R )] (100)

Assuming the same values of r;, r. and p./p, as previously, and the values of A, and k
satisfying the conditions A(r,) = A(r,) = A, = 2, the graph of [1, and its sensitivity is shown

ET, dily  N/p,
'n:Di1 dR \
075 4'0 N'
0.70 b: \‘a 0
N o] —— N T
0.65 y 0 40 ]
Nf
060 s
@z 04 06 ) Rire 02 04 06 08 Rfr
a) bl

Fig. 7. Distribution of sensitivity of T1, versus varying rib radius (a) and generalized stresses for
stationarity point of T1, (b) for rib cross-sectional area inverscly proportional to its radius.
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Fig. 8. Distribution of sensitivity of I, versus varying rib radius (a) and generalized stresses for
stationarity points of I1, (b) for quadratically varying rib cross-section.

in Fig. 8a. Now we observe, contrary to the previous cases, that besides the position of rib
corresponding to maximization of I1,, the condition dI1,/dR = 0 yields the value of R for
which the complementary energy of a disk attains its global minimum. Figure 8b shows the
graphs of radial and circumferential stresses within disk domain for both cases. For the
case of global minimum of 1, we observe the nonvanishing normal force in the rib caused
by the jump of normal stresses [N,] on both sides of the rib.

Example 2. The next two examples are concerned with the bending of plates. Consider
first a uniform circular plate of radius R and of bending stiffness a (Fig. 9). The plate is
rigidly supported along the outer edge and is loaded by the uniform lateral pressure p. The
material of plate and rib is assumed to be lincarly elastic with elastic constants £ and v.
Duc to symmetry of the problem, the nonvanishing stress and strain components within
plate domain are the radial and circumferential bending moments M, M, and curvaturces
. iy, whercas the rib is subjected to bending with the bending moment M, and curvature
r». The moment M, is related to the jump [M,] by the cquation, cf. eqn (47).

M,] = ~M,K=—ur,K. (1on)
The kinematic relations along the rib axis have the following form::
[&.] = =[w..]. & =Kwi, k=0, &k,=—Kw,, « =0. (102)

The deflection field for such plate was derived by Nash (1948) and it is expressed in the

form
rY r ry TR =r2(rV 1 r
— =9 - —_ LY —In =<
r>+4lnR -(R>+l C[4 2 <R>+zlnR for0<r<R

oot J(rY r. A B |
W, = 64D{<rc)+4lnR_l C[4<rc)+2mr_<i forRSr<r, (103)

where the constant C equals

=
|
|
(=,
2%
Ol
—~A—
TN
0

S S T O O A Y )

i i

e

—R

fe

p——L—

Fig. 9. Uniform circular plate stiffened by a ring.




994 K. DEms er al

R RY |l al fR 1 ‘RN «
€= {SZ +4["(Z>]5}1}' {;; * z’[“(\;)]gg}- (104)

Consider now the potential energy of the plate

r

I, = j(U—-pw) dQ+JC"dl— = 7':{DJ-c (r +2\zr,,‘r‘.+z§)rdr—jcpwrdr%-u‘rﬁR}

)

{(105)

where D denotes the plate rigidity. and determines its first variation with respect to position
of a rib and its bending stiffness. In view of (78). o[1, can be written in the form

oI, = J{H[A{&;[A[WB + M. K)o, + U, 57, } dT. (106)

Expressing the static fields in terms of kinematic quantities and noting that d¢, = 6R and
Jdy, = da, eqn (106) yields the following expression :

. s e . R b e
oll, = nDR {( ~ ﬂ.r;ﬂ + EIJ'"‘;].I")()R . JJ'HJ./‘\.()(I}. (107)
¢

In analysing the sensitivity of 1, let us assume now two ditferent kinds of variation of rib
bending stiffness. When the rib stifTness is inversly proportional to its radius, then we have

r. X r. X a .
a = Ra,,, St = — Rlu‘,«)R = - R()R (108)

where g, 1s a prescribed quantity. In view of (106) and (107), the sensitivity of 11, with
respect to R takes the form

dIl, .

d R =nDR H.I‘,, H {2.1‘,. - (.l‘,,l + J‘,,_a)} . ( l()g)
Assuming now constant value of rib stiftness, we have du = 0, and then in view of (100),
the sensitivity of I1, equals

dfll

'—'d“‘RE =nDR {]:J‘,,h{\l" — Ay o) } (110)

Consider now the stationarity of [T, with respect to the position of rib within plate domain.
For the case of varying a, in view of eqn (109), the condition dI1,;d R = 0 yields the following
optimality condition:

R|re

08

Zl2k - - - 4 i ==
—_———_———‘—'

a6

04

5.0 10.0 150  a|Dr,

Fig. 10. Optimal value of rib radius versus plate stiffness parameter.
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Fig. 11. Rectangular plate stiffened by two straight ribs (i) and optimal rib positions versus plate
stitfness parameter (b).
2

”'I-rr+""l'rr— RH“!= 0. (lll)

Substituting eqns (103) and (104) into eqn (111), after some transformations, we have

(O G RC  FIR

from which the optimal value of R equals

R=¢%. (113)

When, on the other hand, the rib stiffness is constant, in view of eqn (110), the condition
dI1,/dR = 0 yiclds

|
Wi + Wa,, — k w, = O (I l4)

Using once again eqns (103) and (104), we obtain the following optimality condition

- OB-let-e o

from which the optimal value of R can be determined. Figure 10 shows the graph of the
optimal value R/r., with respect to varying parameter a/Dr.. It is seen that for increasing
value of a/Dr, the optimal value of R tends asymptotically to the value \/5 r2.

Example 3. This last example is concerned with the optimal position of two straight
ribs reinforcing the rectangular plate of dimensions a x b (Fig. | 1a), which is loaded by the
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lateral pressure p and is simply supported on its all external edges. Moreover. we assume
that both ribs are positioned symmetrically at the distance ¢ from the plate edges, and their
torsional rigidity can be neglected.

Consider now the mean stiffness design. for which the optimality condition follows
from the stationarity of potential energy of the plate. For the problem considered. in view
of (78). the first variation of potential energy can be expressed as follows:

dI1, = J[(th.r,).(— T.r,}drét = (. (116)

Using (46) and (47) and integrating by parts eqn (116) we obtain the following form of
optimality condition

JﬁQ]]w,,,dF:O (L7

where [Q ] denotes the jump of plate generalized shear forces on both sides of rib axis.

Assuming now uniform lateral pressure p. let us consider the approximate solution of
the problem at hand. We assume namely, that the plate is connected with a rib at { points,
where { tends to infinity. Thus, the optimality condition (117) can be replaced by its
approximate form

1
Y P, =0 (L18)

t~1 Vv,

where (4,. 5,) arce the Cartesian coordinate of the ith point and P, denotes the interaction
force between the plate and rib at this point. The torees P (i = 1,2, ..., 1) can be determined
from the condition of compaltability of plate and rib deflections at points (¢4, n,).

The total deflection of plate is equal to the sum of deflection of uniform plate subjected
to the lateral pressure p, which can be obtained from the Navier solution, ¢f. Timoshenko
and Woinowsky-Kricger (1959), and defiection of plate caused by interaction forees between
the plate and ribs. Thus, it can be written

!
wix, v} = wl(x, v)— Z Pavi(x, 1) (119)
0=l
where
. MRX | Hmy
lop & = sin - —-- s
H A a
wh(x, y) = _hp Sy o e, mon=1.3.5..
D T LT m-ony
mny =5+
a- b
. mmt omn(a—1t)\ . nmy;
Sin ~—= 4+ §In -~——-——— | §IN e
4 A a a > . ommx | nmy
wi(x, ¥y) = -y Z Z N A RRIEEE 11 BNRIEERE-11 1 I (120)
" n (Ime_, Ln=l m- n-y a a
— + —
ac bl

The deflection of rib can be expressed in the form
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Fig. 12. Rectangular plate stiffened by four straight ribs (1) and optimal rib positions versus [;late
stiffness parameter (b).

I
o(y) =3 Pey) (121)
it

where », denote the influence coetlicients of simply supported beam which equal

b] , ] ‘
a0 i) o

b’ : ‘ ’
- SO-EN0-D-30- wme

where EJ denotes the bending stiffness of the rib.
Now, the interaction forces P, can be determined from the condition

v(n) = w(t, n,). (123)

Substituting (119) and (121) into (123), we obtain the following set of equations,

i
2 W)+, )P =wton) i=1.2,...1 (124)

j=1

from which all P, can be determined.

Knowing the forces P,, the plate deflection w and its derivative w,, are calculated from
eqn (119), and next the results arc substituted into optimality equation (118). Figure 11b
shows the results of numerical solution of eqn (118) for I =10, 5, = /11, where the
nondimensional position of rib f = t/a versus the parameter « = EJ/Da is plotted. It is seen,
that for small values of rib stiffness the ribs are positioned on the axis of symmetry of plate,
whereas for increasing rib stiffness they are translated towards the plate edges tending to
their terminal position specified by 7 = 0.313 for x tending to infinity. A similar analysis for
four ribs placed symmetrically provides an optimal solution illustrated in Fig. 12.
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7. CONCLUDING REMARKS

The present paper provides a general variational method to treat problems of sensitivity
analysis and optimal stiffener design by considering varying traction discontinuity lines.
The sensitivities of arbitrary differentiable functionals are expressed explicitly in terms of
state fields of primary and adjoint plates. These expressions can next be used in both
analytical and numerical solutions for optimal design or identification problems. Numericul
implementation through finite element method would require determination of both primary
and adjoint displacement fields at nodal points along the rib and within the plate domain,
so the respective discontinuities along rib line can be calculated. The study of various
numerical approximation schemes is beyvond the scope of this paper and will be discussed
separately.
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